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Abstract. In this paper, point and interval estimation of stress-strength reliability based on upper record
ranked set sampling (RRSS) from one-parameter exponential distribution are considered. Maximum like-
lihood estimator (MLE) as well as the uniformly minimum variance unbiased estimator (UMVUE) of
stress-strength parameter are derived and their performance are studied. Also, some confidence intervals
for stress-strength parameter based on upper RRSS are constructed and then compared on the basis of a
simulation study. Finally, a data set has been analyzed for illustrative purposes.

1. Introduction

Let the random variable X represent the stress experienced by the component and the random variable
Y stand for the strength of the component available to overcome the stress. If the stress exceeds the strength,
i.e. X > Y, the component would fail. Thus, reliability is defined as the probability of not failing or
Pr(X < Y). In reliability context, the parameter R := Pr(X < Y) is called stress-strength reliability. Parametric
and non-parametric inferences on R for several specific distributions of X and Y under different sampling
schemes have been found in the literature. It seems that Birnbaum and McCarty (1958) was the first paper
with Pr(X < Y) in its title. They obtained a non-parametric upper confidence bound for Pr(Y < X). Owen
et al. (1964) studied the stress-strength R under parametric assumptions on X and Y. They constructed
confidence limits for R when X and Y are dependent or independent normally distributed random variables.
There are several works on the inference procedures for R based on complete and incomplete data from X
and Y samples. We refer the readers to Kotz et al. (2003) and references therein for some applications of R.
This book collects and digests theoretical and practical results on the theory and applications of the stress-
strength relationships in industrial and economic systems up to 2003. Kundu and Raqab (2009) considered
the estimation of the stress-strength parameter Pr(Y < X), when X and Y are independent and both are three-
parameter Weibull distributions. Erylmaz (2010) studied stress-strength reliability for a general coherent
system and illustrated the estimation procedure for exponential stress-strength distributions. Dattner
(2013) considered non-parametric estimation of Pr(Y < X) when both X and Y are observed with additional
errors. Recently, some authors have considered the statistical inference for R based on record data. We
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recall that there are some situations such as in destructive stress testing, the experiments have been done
sequentially and only record-breaking data are observed. An example of such a set-up is the destructive
testing of wooden beams in which the first beam is subjected to increasing stress until it breaks; thereafter
beams are subjected to increasing stress until they break or the stress reaches the stress needed to break
the previous broken beam. In this way a beam breaks only if its strength is a lower record value; see
Glick (1978), Ahmadi and Arghami (2003) and Gulati and Padgett (2003). In record set-up, this scheme is
known as inverse sampling plan. For formal definition of records, let {Xi, i ≥ 1} be a sequence of independent
and identically distributed (iid) continuous random variables. Then, an observation X j is called an upper
record value if its value exceeds all previous observations, i.e., X j is an upper record if X j > Xi for every
i < j. These type of data are of interest and importance in several applications such as meteorological
analysis, sporting and athletic events, reliability analysis specially in studying minimal repair policy and
non-homogeneous Poisson process. We refer the reader to Arnold et al. (1998) for more details on record
values. Among some works about stress-strength reliability based on records, Baklizi (2008a and 2014)
studied point and interval estimation of the stress-strength reliability using record data in the one and two-
parameter exponential distributions. Baklizi (2008b) considered the likelihood and Bayesian estimation of
stress-strength reliability using lower record values from the generalized exponential distribution.

Mutllak et al. (2010) considered estimation of R using ranked set sampling (RSS) in the case of ex-
ponential distribution. We recall that the RSS is a sampling procedure that can be used to improve the
cost efficiency of selecting sample units of an experiment and can be viewed as a generalization of the
simple random sampling (SRS). It is recommended when the process of measuring sample units could
be easily ranked than measured. We refer the reader to Chen et al. (2004) for pertinent details on theory
and applications of ranked set sampling. This sampling motivate us to study the estimation of the stress-
strength reliability based on a new sampling scheme in record-breaking data. More specifically, suppose n
independent sequences are considered sequentially, the ith sequence sampling is terminated when the ith
record is observed. The only observations available for analysis are the last record value in each sequences.
Let us denote the last record for the ith sequence in this plan by Ri,i, then the available observations are
R =

(
R1,1,R2,2, ...,Rn,n

)T, i.e.

1 : R(1)1 → R1,1 = R(1)1

2 : R(1)2 R(2)2 → R2,2 = R(2)2

...
...

...
. . .

...
...

n : R(1)n R(2)n ... R(n)n → Rn,n = R(n)n

where R(i) j is the ith ordinary (upper) record in the jth sequence. Notice that unlike the ordinary records,
here Ri,i’s are independent random variables but not ordered. This scheme proposed by Salehi and Ahmadi
(2014). In fact, the proposed scheme is based on general RSS, so, we call this design record ranked set sampling
(RRSS). Let F(.;θ) and f (.;θ) be the cumulative distribution function (cdf) and probability density function
(pdf) of the sampling population, respectively. Then, by using the marginal density of ordinary record (see,
Arnold et al., 1998) the joint density of R is readily obtained as

fR(r;θ) =

n∏
i=1

{
− log(1 − F(ri,i;θ))

}i−1

(i − 1)!
f (ri,i;θ), θ ∈ Θ, (1)

where r =
(
r1,1, r2,2, ..., rn,n

)T is the observed vector of R, θ is real-valued parameter and Θ is the parameter
space.
As an example for proposed plan, consider a parallel repairable system with minimal repairs, consisting of n
identical components work independently with common cdf F. It is to be noted that minimal repair means
that the system is brought to the condition it had immediately before the failure occurred, i.e. the age of
the system is not changed as a result of the repair. Let us assume that the ith component (i = 1, ...,n) can be
repaired (i − 1) times, i.e, it is not repairable after the ith its failure. Hence, the n(n+1)

2 th failure is fatal to the
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system and the lifetime of the system is given by max{T1, ...,Tn}, where Ti is the lifetime of the ith component.
On the other hand, minimal repair process has the same distribution as the process of upper record values
derived from iid observations with distribution F, see for example, Brown and Proschan (1983), Ahmadi
and Arghami (2001) and Balakrishnan et al. (2009). Consequently, Ti is identical in distribution with Ri,i, in
proposed plan. While system’s lifetime is calculated according to max{R1,1, ...,Rn,n}, it will be adequate to
know each Ri,i to acquire the whole system’s lifetime.
The rest of this paper is organized as follows: In Section 2, we derive the MLE and UMVUE of R as
well as their statistical proprieties and then compare them on the basis of mean squared error (MSE).
Some confidence intervals for R are derived and compared in Sections 3 and 4. An illustrative example is
considered in Section 5.

2. Point Estimation

Let us recall that a random variable Z is said to have an exponential distribution with mean θ(> 0)
denoted by Z ∼ Exp(θ), if its pdf and cdf, respectively, are

f (z;θ) =
1
θ

e−
z
θ and F(z;θ) = 1 − e−

z
θ , z > 0, θ > 0. (2)

The exponential distribution is the simplest and most important distribution in reliability studies, and is
applied in a wide variety of statistical procedures, especially in life testing problems. See, for example,
Balakrishnan and Basu (1995). Let X and Y be two independent random variables following one-parameter
exponential distributions with the parameters θ1 and θ2, respectively. Also, suppose R = Pr(X < Y) is the

stress-strength reliability. It is easy to see that in this case R =
θ2

θ2 + θ1
. We are interested in estimating

the stress-strength R when the samples are permitted to be upper RRSS’s with possibly different number
of observations. More specifically, let r =

(
r1,1, r2,2, ..., rn,n

)T be the observation of random vector R =(
R1,1,R2,2, ...,Rn,n

)T, an upper RRSS of size n from Exp(θ1), and s =
(
s1,1, s2,2, ..., sm,m

)T be the observation of
the random vector S =

(
S1,1,S2,2, ...,Sm,m

)T, an upper RRSS of size m from Exp(θ2).

2.1. MLE
First, we find the MLE of θ1 and θ2. By substituting (2) into (1), the likelihood functions follow as

L1(θ1; r) =
θ−N

1
n∏

i=1
(i − 1)!

exp

− 1
θ1

n∑
i=1

ri,i

 , (3)

L2(θ2; s) =
θ−M

2
m∏

j=1
( j − 1)!

exp

− 1
θ2

m∑
j=1

s j, j

 , (4)

where N =
n(n+1)

2 and M =
m(m+1)

2 . Then, the MLE of the parameters θ1 and θ2 can be readily given by

θ̂1(ML) =
1
N

n∑
i=1

Ri,i and θ̂2(ML) =
1
M

m∑
j=1

S j, j, (5)

respectively. Using the invariance property of the MLE, we find the MLE of R as

R̂ML =
θ̂2(ML)

θ̂2(ML) + θ̂1(ML)
=

1 +
M
N

n∑
i=1

Ri,i

m∑
j=1

S j, j


−1

. (6)
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From Arnold et al. (1998, pp. 20), Ri,i has Gamma-distribution with parameters i and θ1, denoted by
Ri,i ∼ Gamma(i, θ1) with pdf

fRi,i (ri,i;θ1) =
ri−1

i,i

Γ(i)θ1
e−

ri,i
θ1 , ri,i > 0,

where Γ(.) is the complete gamma function. As it is mentioned earlier, Ri,i’s are independent random

variables. Therefore,
n∑

i=1
Ri,i ∼ Gamma(N, θ1) and similarly

m∑
j=1

S j, j ∼ Gamma(M, θ2). Consequently, from (6)

we have

R̂ML
d
=

(
1 +

1 − R
R

F2N,2M

)−1

, (7)

where d
= means identical in distribution and F2N,2M stands for the F-distribution with 2N and 2M degrees
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Figure 1: Plot of MSE(R̂ML,R) and Bias(R̂ML,R) versus R.

of freedoms. We use (7) for obtaining the bias and MSE of R̂ML, i.e. Bias(R̂ML,R) = E
(
R̂ML − R

)
and
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MSE(R̂ML,R) = E
(
R̂ML − R

)2
, respectively. It is easy to see that by substituting R = 0.5 into (7) yields

R̂ML
d
=

(
1 + F2N,2M

)−1 , and then one can show that E
(
R̂ML

)
= 0.5 when n = m. In Figures 1 and 2, we plot

the numerical values of Bias and MSE of R̂ML versus R, for some selected values of n and m. From these
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Figure 2: Continued.

figures, we observe the following points:

• As it is expected, the MSE and the Bias are reduced by increasing the sample sizes [see, Figure 1, parts
(c) and (d)].

• When n < m, the performance of the MLE is better for R = 0.5 + γ comparing to R = 0.5 − γ, where
0 < γ < 0.5. [see, Figure 2, parts (e) and (f)].

• Let MSE(R̂ML,Rmax) = max
R

MSE(R̂ML,R), then we observe that Rmax ∝
n

n+m [see, Figure 2, parts (e) and

(g)].
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• If n < m, we have over-estimation and else we have under-estimation and also Bias(R̂ML,R) is sym-
metric, say about the point (0.5, 0), when n = m [see, Figure 1, part (d) and Figure 2, parts (f) and
(h)].

• The MSE(R̂ML,R) is symmetric, say about R = 0.5, when n = m, and departures from symmetry when
n < m and n > m, respectively [see, Figure 1, part (a)].

• As mentioned earlier, R̂ML is unbiased when R = 0.5 and m = n, this is confirmed by Figure 1 part (d).

2.2. UMVUE
It should be mentioned that when n = m = 1, the UMVUE of R does not exist [see, Kotz et al. (2003)].

So, we consider the following three cases:

(i) Case 1: min{m,n} ≥ 2:

Since R1,1
d
= X and S1,1

d
= Y, so I

(
R1,1 < S1,1

)
is an unbiased estimator of R, where I(A) = 1, if the event A

occurs and I(A) = 0, otherwise. Also, from (3) and (4) it could be seen that

 n∑
i=1

Ri,i,
m∑

j=1
S j, j

T

is a complete

sufficient statistic for (θ1, θ2). Thus, by applying the Rao-Blackwell and Lehmann-Scheffe’s Theorem [see,
e.g. Lehmann and Cassela (1998)], gives the UMVUE of R as

R̂UMVU = Pr

R1,1 < S1,1 |

n∑
i=1

Ri,i,
m∑

j=1

S j, j


= Pr

W <

m∑
j=1

S j, j

n∑
i=1

Ri,i

|

n∑
i=1

Ri,i,
m∑

j=1

S j, j

 , (8)

where W =
R1,1

S1,1

m∑
j=1

S j, j

n∑
i=1

Ri,i

d
=

Beta(1,N − 1)
Beta(1,M − 1)

is an ancillary statistic. Then, by Basu’s Theorem, it is independent

of the complete sufficient statistic. So we have R̂UMVU = FW

 m∑
j=1

S j, j/
n∑

i=1

Ri,i

, where FW(.) is the cdf of the

random variable W. Finally, by doing some algebraic manipulation, we obtain

R̂UMVU =


1 −Q

(
R̂ML; n,m

)
, i f R̂ML ≤

N
N+M ,

Q
(
1 − R̂ML; m,n

)
, i f R̂ML ≥

N
N+M ,

(9)

where R̂ML is given by (6) and

Q(t; n,m) =

N−1∑
d=0

(N−1
d

)(d+M−1
d

) (
−

M
N

t
1 − t

)d

, (10)

with N = n(n + 1)/2 and M = m(m + 1)/2.
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(ii) Case 2: n = 1 and m ≥ 2:

In this case, obviously

R1,1,
m∑

j=1
S j, j

T

is a complete sufficient statistic and hence by using the Rao-Blackwell

and Lehmann-Scheffe’s Theorem, the UMVUE of R is derived as follows1 −
R1,1

m∑
j=1

S j, j


M−1

I

R1,1 ≤

m∑
j=1

S j, j

 . (11)

(iii) Case 3: m = 1 and n ≥ 2:

Similar to the Case 2, one can show that the UMVUE of R is

1 −

1 −
S1,1

n∑
i=1

Ri,i


N−1

I

S1,1 ≤

n∑
i=1

Ri,i

 . (12)

From (9), (10) and using (7), we have plotted the numerical values of Var
(
R̂UMVU

)
versus R, for some choices

of n and m in Figure 3. From this figure, it is observed that variance of R̂UMVU is symmetric, say about
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Figure 3: Plot of Var(R̂UMVU ,R) versus R.

R = 0.5, when n = m and is decreasing when the sample sizes increase (as we expected). It is observed from
Figure 3 that the behaviour of the variance of R̂UMVU is almost similar to the MSE of R̂ML.

2.3. Comparison

In this section, we intend to compare R̂UMVU and R̂ML, as R̂UMVU is unbiased, so we consider the MSE as
a criterion. To this end, we have plotted MSE and variance of R̂ML and R̂UMVU, respectively, in Figure 4 for
some selected values of m and n. From this figure, we observe that MSE of R̂ML is less then the variance of
R̂UMVU for the values of R near to 0.5 specially for the small sample sizes.
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Figure 4: Comparison of MSE(R̂ML,R) and Var(R̂UMVU ,R) for some selected values of n and m.

3. Interval Estimation

We consider three methods to construct confidence interval (CI) for R.

3.1. CI Based on a Pivotal Quantity
From (7), a 100(1 − α)% CI for R is derived as follows

Pr
{ (

1 +
1 − R̂ML

R̂ML
F2M,2N

(
1 −

α
2

))−1

≤ R ≤
(
1 +

1 − R̂ML

R̂ML
F2M,2N

(
α
2

))
−1

}
= 1 − α, (13)

where F2M,2N(γ) is the γth quantile of F2M,2N-distribution. We can use (7) to obtain the expected length of CI
in (13).

3.2. Approximate CI
Consider a situation that the number of record values is sufficiently large. Hence we may use the

asymptotic confidence interval based on the limit distribution of R̂ML. Let us denote the convergence in
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distribution by d
→. We know that as n,m → ∞, then

(
θ̂1 − θ1

) d
→ N(0, σ2

1) and
(
θ̂2 − θ2

) d
→ N(0, σ2

2), where

σ2
1 = −1/E

(
∂2

∂θ2
1

log L1(θ1; R)
)

and σ2
2 = −1/E

(
∂2

∂θ2
2

log L2(θ2; S)
)

with L1 and L2 given in (3) and (4), respectively.

It is easy to show that σ2
1 =

θ2
1

N and σ2
2 =

θ2
2

M . Now, suppose that n,m are sufficiently large in such a way that
M
N → p, where p ∈ (0, 1), so we readily conclude that

√

N
(
θ̂1(ML) − θ1

θ̂2(ML) − θ2

)
d
→ N2

( 0
0

)
,

 θ2
1 0

0
θ2

2
p

 .
Hence, taking 1(t1, t2) = t2

t1+t2
and then a simple application of the multivariate delta method yields [see,

Wasserman (2006, pp. 5-6)](
R̂ML − R

)
=

(
1
(
θ̂1(ML), θ̂2(ML)

)
− 1 (θ1, θ2)

) d
→ N(0, ω2), (14)

where

ω =
θ1θ2

(θ1 + θ2)2

√
1
N

(
1 +

1
p

)
. (15)

By using the property in (14) and applying the Slutsky’s Theorem, a 100(1 − α)% approximate CI for R is
derived as follows(

R̂ML − z1− α2 ω̂, R̂ML + z1− α2 ω̂
)
, (16)

where zγ stands for the γth quantiles of the standard normal distribution and ω̂ is obtained by substituting
the plug-in estimators θ̂1(ML) and θ̂2(ML) instead of θ1 and θ2, respectively, in (15). Similarly, if n < m we get

the approximate CI for R as
(
R̂ML − z1− α2 δ̂, R̂ML + z1− α2 δ̂

)
, where δ̂ =

θ̂1(ML)θ̂2(ML)

(θ̂1(ML)+θ̂2(ML))2

√
1
M

(
1 + p

)
.

3.3. Parametric Bootstrap CIs
All inference procedures in this paper are obtained based on

∑n
i=1 Ri,i and

∑m
j=1 S j, j and using the fact that

n∑
i=1

Ri,i ∼ Gamma(N, θ1) and
m∑

j=1
S j, j ∼ Gamma(M, θ2), so we can use the parametric bootstrap CIs. There are

several ways to construct bootstrap CIs. But, the percentile CI and bootstrap-t CI are commonly used for
the stress-strength. For more details on the various methods to construct bootstrap CIs and also using R
Software see Efron and Tibshirani (1993) and Rizzo (2008), respectively. The following algorithms are used
to construct the parametric bootstrap CIs for R in this paper.

Algorithm 3.1. (Percentile CI)

Step 1. Based on the independent observed samples r =
(
r1,1, r2,2, ..., rn,n

)T and s =
(
s1,1, s2,2, ..., sm,m

)T, calculate θ̂1(ML),
θ̂2(ML) and R̂ML from (5) and (6), respectively.

Step 2. Generate r?i,i ∼ Gamma(i, θ̂1(ML)), i = 1, ...,n and s?j, j ∼ Gamma( j, θ̂2(ML)), j = 1, ...,m. Use r? =
(
r?1,1, r

?
2,2, ..., r

?
n,n

)T

and s? =
(
s?1,1, s

?
2,2, ..., s

?
m,m

)T
to calculate θ̂?1(ML), θ̂

?
2(ML) and R̂?ML.

Step 3. Repeat Step 2 for b = 1, ...,B, to derive R̂?(b)ML, b = 1, ...,B.

Step 4. Let Ĥ be the empirical cumulative distribution function based on the parametric bootstrap estimates R̂?(b)ML, b =

1, ...,B, then the 100(1 − α)% percentile CI of R is
(
Ĥ−1

(
α
2

)
, Ĥ−1

(
1 − α

2

))
.
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Algorithm 3.2. (Bootstrap-t CI based on the asymptotic standard deviation ω in (15))

Step 1. Do Step 1 of Algorithm 3.1 and also compute ω̂ in (15) with θ̂1(ML) and θ̂2(ML) instead of θ1 and θ2, respectively.

Step 2. Do Step 2 of Algorithm 3.1 and also compute ω̂? given in (15) substituting θ̂?1(ML) and θ̂?2(ML) instead of θ1 and
θ2, respectively.

Step 3. Repeat Step 2 for b = 1, ...,B, to derive R̂?(b)ML and ω̂?(b), b = 1, ...,B.

Step 4. Let Z? =
(
z?(1), ..., z

?
(B)

)T
, where z?(b) =

R̂?(b)ML−R̂

ω̂?(b)
, b = 1, ...,B.

Step 5. Compute the 100(1 − α)% bootstrap-t CI for R as
(
R̂ − z?1− α2

ω̂, R̂ − z?α
2
ω̂
)
, where z?γ is the γth quantile of Z?

given by Step 4.

Algorithm 3.3. (Bootstrap-t CI based on the bootstrap variance estimate)

Step 1. Do Steps 1-2 of Algorithm 3.1.

Step 2. Do Step 3 of Algorithm 3.1.

Step 3. For each iteration of Step 2, design another parametric bootstrap procedure to estimate the standard deviation of
R̂?(b)ML, say σ̂

(
R̂?(b)ML

)
. More precisely, repeat Step 2 of Algorithm 3.1 for b′ = 1, ...,B′, with θ̂?1(ML) and θ̂?2(ML)

instead of θ̂1(ML) and θ̂2(ML), respectively, and then calculate

σ̂
(
R̂?(b)ML

)
=

√√√
1

B′ − 1

B′∑
b′=1

(
R̂??(b′)ML − R̄??

)2
,

where R̄?? = 1
B′

B′∑
b′=1

R̂??(b′)ML.

Step 4. Let t? =
(
t?(1), ..., t

?
(B)

)T
, where t?(b) =

R̂?(b)ML−R̂

σ̂
(
R̂?(b)ML

) , b = 1, ...,B.

Step 5. Compute the 100(1 − α)% bootstrap-t CI for R as
(
R̂ − t?1− α2

ω̂, R̂ − t?α
2
ω̂
)
, where t?γ is the γth quantile of t?

given by Step 4.

4. Simulation Study

In the present section, we consider a simulation study for comparing the CIs obtained in the previous
section. All combination of n = 3, 5, 7, m = 3, 5, 7, θ1 = 1, R = 0.1, 0.3, 0.5, 0.95, 0.99 and α = 0.05, 0.1 are
used. In each combination, 1000 samples of r and s from Exp(θ1) and Exp(θ2) are simulated, respectively.
Notice that, we fix B = 200 and B′ = 25. We generated the following CIs and collected the results in Tables
1 and 2.

• Perc: The parametric percentile CI obtained based on Algorithm 3.1.

• Boot1-t: The parametric bootstrap-t CI obtained based on Algorithm 3.2.

• Boot2-t: The parametric bootstrap-t CI obtained based on Algorithm 3.3.

• MLE: The CI based on pivotal quantity given by (13).

• AMLE: The asymptotic CI given in (16).
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Table 1: The coverage probability (C.P.) and expected length (E.L.) of R for α=0.05.

Perc Boot1-t Boot2-t MLE AMLE
R n m C.P. E.L. C.P. E.L. C.P. E.L. C.P. E.L. C.P. E.L.

0.10 3 3 0.943 0.246 0.973 0.297 0.965 0.281 0.947 0.245 0.908 0.218
0.10 3 5 0.934 0.215 0.976 0.210 0.984 0.239 0.949 0.187 0.966 0.221
0.10 3 7 0.921 0.207 0.971 0.191 0.989 0.253 0.951 0.172 0.988 0.240
0.10 5 3 0.937 0.174 0.968 0.230 0.986 0.284 0.945 0.201 0.931 0.204
0.10 5 5 0.952 0.139 0.962 0.149 0.957 0.151 0.955 0.139 0.936 0.132
0.10 5 7 0.937 0.126 0.950 0.127 0.978 0.143 0.944 0.121 0.959 0.133
0.10 7 3 0.939 0.156 0.967 0.215 0.995 0.325 0.961 0.190 0.961 0.216
0.10 7 5 0.943 0.116 0.948 0.129 0.979 0.149 0.950 0.122 0.951 0.128
0.10 7 7 0.950 0.099 0.955 0.103 0.965 0.106 0.960 0.099 0.947 0.096
0.30 3 3 0.948 0.451 0.982 0.609 0.973 0.607 0.953 0.452 0.901 0.458
0.30 3 5 0.940 0.397 0.974 0.460 0.985 0.558 0.949 0.375 0.959 0.473
0.30 3 7 0.934 0.380 0.968 0.422 0.991 0.593 0.945 0.352 0.980 0.531
0.30 5 3 0.940 0.362 0.974 0.489 0.992 0.616 0.956 0.387 0.945 0.455
0.30 5 5 0.945 0.292 0.963 0.329 0.967 0.341 0.949 0.293 0.926 0.294
0.30 5 7 0.942 0.263 0.960 0.281 0.977 0.328 0.952 0.258 0.960 0.293
0.30 7 3 0.944 0.342 0.970 0.460 0.997 0.700 0.954 0.372 0.972 0.515
0.30 7 5 0.960 0.255 0.977 0.287 0.993 0.339 0.967 0.261 0.968 0.291
0.30 7 7 0.953 0.216 0.965 0.230 0.969 0.241 0.960 0.216 0.941 0.217
0.50 3 3 0.957 0.502 0.975 0.689 0.970 0.695 0.961 0.502 0.899 0.523
0.50 3 5 0.935 0.431 0.971 0.541 0.985 0.679 0.949 0.434 0.955 0.542
0.50 3 7 0.910 0.407 0.969 0.502 0.996 0.744 0.951 0.410 0.970 0.605
0.50 5 3 0.946 0.431 0.975 0.552 0.982 0.690 0.945 0.435 0.951 0.543
0.50 5 5 0.935 0.338 0.956 0.383 0.960 0.402 0.934 0.339 0.913 0.346
0.50 5 7 0.944 0.301 0.970 0.332 0.987 0.393 0.954 0.301 0.958 0.343
0.50 7 3 0.932 0.410 0.984 0.516 0.994 0.749 0.947 0.411 0.967 0.609
0.50 7 5 0.945 0.301 0.966 0.333 0.988 0.395 0.948 0.301 0.957 0.343
0.50 7 7 0.945 0.255 0.965 0.273 0.970 0.288 0.952 0.254 0.933 0.257
0.95 3 3 0.934 0.149 0.966 0.161 0.952 0.149 0.941 0.148 0.899 0.122
0.95 3 5 0.919 0.098 0.941 0.122 0.970 0.150 0.933 0.116 0.905 0.109
0.95 3 7 0.913 0.086 0.952 0.112 0.983 0.168 0.948 0.108 0.935 0.113
0.95 5 3 0.920 0.127 0.957 0.112 0.963 0.123 0.942 0.107 0.950 0.120
0.95 5 5 0.939 0.077 0.950 0.078 0.952 0.078 0.948 0.077 0.917 0.071
0.95 5 7 0.948 0.063 0.962 0.067 0.979 0.078 0.959 0.067 0.955 0.069
0.95 7 3 0.920 0.120 0.951 0.100 0.980 0.129 0.945 0.096 0.979 0.127
0.95 7 5 0.941 0.069 0.955 0.066 0.971 0.073 0.945 0.065 0.958 0.071
0.95 7 7 0.941 0.053 0.939 0.053 0.948 0.054 0.945 0.053 0.936 0.051
0.99 3 3 0.948 0.033 0.964 0.033 0.951 0.029 0.952 0.033 0.908 0.025
0.99 3 5 0.952 0.022 0.955 0.026 0.984 0.032 0.958 0.027 0.940 0.023
0.99 3 7 0.925 0.019 0.946 0.024 0.987 0.036 0.945 0.024 0.939 0.023
0.99 5 3 0.936 0.030 0.949 0.024 0.968 0.025 0.951 0.024 0.958 0.025
0.99 5 5 0.941 0.017 0.947 0.017 0.946 0.016 0.951 0.017 0.938 0.015
0.99 5 7 0.941 0.013 0.948 0.014 0.969 0.016 0.953 0.014 0.940 0.014
0.99 7 3 0.928 0.028 0.956 0.021 0.984 0.027 0.953 0.022 0.983 0.027
0.99 7 5 0.936 0.015 0.942 0.014 0.963 0.015 0.943 0.014 0.959 0.015
0.99 7 7 0.949 0.011 0.951 0.011 0.951 0.011 0.951 0.011 0.932 0.011

From Tables 1 and 2 we observe the following points:

• In the all of CIs we see that the expected length is almost decreasing when the sample sizes increase
(as we expect).

• It seems that the maximum of the expected length occurs at R = 0.5 and the expected lengths are very
small for the extreme values of R, namely for 0.95 and 0.99 (similar to the MSE of the point estimators).

• The percentile CI is better than the other bootstrap CIs since its expected length is smaller specially
for the values of R close to 0.5.

• The Boot1-t CI works well compared to the Boot2-t CI specially in the large sample sizes.
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Table 2: The values of C.P. and E.L. of R for α=0.1.
Perc Boot1-t Boot2-t MLE AMLE

R n m C.P. E.L. C.P. E.L. C.P. E.L. C.P. E.L. C.P. E.L.
0.10 3 3 0.885 0.201 0.923 0.229 0.920 0.215 0.896 0.201 0.859 0.185
0.10 3 5 0.885 0.177 0.924 0.172 0.950 0.193 0.900 0.158 0.938 0.190
0.10 3 7 0.853 0.170 0.927 0.157 0.971 0.210 0.898 0.147 0.971 0.215
0.10 5 3 0.909 0.146 0.931 0.180 0.973 0.222 0.918 0.165 0.910 0.176
0.10 5 5 0.897 0.116 0.915 0.121 0.916 0.121 0.904 0.116 0.890 0.111
0.10 5 7 0.902 0.103 0.912 0.103 0.942 0.114 0.902 0.100 0.925 0.110
0.10 7 3 0.866 0.133 0.904 0.169 0.976 0.255 0.897 0.156 0.927 0.196
0.10 7 5 0.893 0.097 0.895 0.104 0.933 0.120 0.897 0.101 0.915 0.108
0.10 7 7 0.908 0.082 0.916 0.084 0.932 0.085 0.919 0.082 0.904 0.080
0.30 3 3 0.879 0.379 0.941 0.467 0.922 0.465 0.899 0.381 0.847 0.381
0.30 3 5 0.870 0.336 0.922 0.372 0.954 0.453 0.885 0.322 0.904 0.401
0.30 3 7 0.905 0.323 0.941 0.346 0.987 0.502 0.921 0.304 0.974 0.453
0.30 5 3 0.883 0.311 0.928 0.382 0.963 0.482 0.907 0.329 0.907 0.388
0.30 5 5 0.925 0.247 0.941 0.268 0.946 0.276 0.927 0.248 0.904 0.248
0.30 5 7 0.883 0.222 0.913 0.232 0.942 0.268 0.893 0.219 0.912 0.247
0.30 7 3 0.865 0.287 0.916 0.357 0.984 0.544 0.893 0.309 0.929 0.429
0.30 7 5 0.890 0.215 0.911 0.233 0.945 0.273 0.897 0.218 0.913 0.243
0.30 7 7 0.906 0.183 0.916 0.191 0.920 0.199 0.906 0.183 0.895 0.183
0.50 3 3 0.899 0.428 0.937 0.535 0.927 0.543 0.911 0.430 0.863 0.440
0.50 3 5 0.882 0.368 0.938 0.434 0.966 0.545 0.909 0.371 0.929 0.457
0.50 3 7 0.863 0.346 0.917 0.400 0.972 0.604 0.889 0.348 0.943 0.508
0.50 5 3 0.869 0.365 0.922 0.432 0.954 0.543 0.884 0.369 0.900 0.454
0.50 5 5 0.907 0.288 0.932 0.315 0.933 0.328 0.910 0.288 0.893 0.291
0.50 5 7 0.891 0.254 0.915 0.272 0.951 0.319 0.903 0.254 0.918 0.288
0.50 7 3 0.886 0.347 0.937 0.408 0.985 0.614 0.920 0.350 0.960 0.511
0.50 7 5 0.892 0.253 0.906 0.272 0.951 0.318 0.892 0.254 0.907 0.288
0.50 7 7 0.880 0.214 0.908 0.225 0.916 0.235 0.899 0.214 0.878 0.216
0.95 3 3 0.916 0.116 0.942 0.124 0.929 0.111 0.916 0.117 0.882 0.103
0.95 3 5 0.893 0.081 0.910 0.096 0.964 0.117 0.899 0.094 0.908 0.096
0.95 3 7 0.872 0.071 0.909 0.088 0.983 0.132 0.901 0.086 0.910 0.102
0.95 5 3 0.881 0.100 0.911 0.090 0.943 0.098 0.901 0.087 0.932 0.103
0.95 5 5 0.904 0.063 0.907 0.064 0.904 0.063 0.902 0.063 0.893 0.060
0.95 5 7 0.906 0.053 0.908 0.056 0.937 0.063 0.906 0.055 0.923 0.058
0.95 7 3 0.865 0.097 0.922 0.084 0.976 0.107 0.906 0.082 0.973 0.117
0.95 7 5 0.893 0.056 0.894 0.054 0.923 0.059 0.897 0.053 0.920 0.059
0.95 7 7 0.897 0.044 0.902 0.044 0.904 0.045 0.899 0.045 0.896 0.043
0.99 3 3 0.900 0.027 0.907 0.027 0.858 0.023 0.899 0.027 0.865 0.022
0.99 3 5 0.884 0.018 0.893 0.021 0.950 0.024 0.891 0.021 0.891 0.020
0.99 3 7 0.865 0.015 0.887 0.019 0.968 0.027 0.892 0.019 0.912 0.021
0.99 5 3 0.876 0.023 0.897 0.020 0.916 0.020 0.895 0.020 0.933 0.023
0.99 5 5 0.886 0.014 0.883 0.014 0.862 0.013 0.889 0.014 0.892 0.013
0.99 5 7 0.870 0.011 0.873 0.011 0.909 0.013 0.879 0.012 0.891 0.012
0.99 7 3 0.875 0.022 0.895 0.018 0.955 0.021 0.888 0.018 0.964 0.025
0.99 7 5 0.886 0.012 0.887 0.012 0.925 0.013 0.895 0.012 0.928 0.013
0.99 7 7 0.882 0.009 0.889 0.009 0.885 0.009 0.891 0.009 0.881 0.009
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• As expected from the intuition, the exact CI of MLE is the best CI with respect to approximated CIs
while the performance of the percentile CI is similar to the CI based on MLE.

5. An Illustrative Example

In order to illustrate the results obtained in the preceding sections, we simulated two independent upper
RRSSs with sizes n = m = 7, i.e. r = (r1,1, ..., r7,7)T and s = (s1,1, ..., s7,7)T, from Exp(θ1 = 7) and Exp(θ2 = 3).
The generated samples are displayed in Table 3. From Table 3, it is observed that ri,i’s and si,i’s are not

Table 3: The simulated data.
r 5.907 23.714 22.352 20.875 26.800 56.346 37.190
s 1.710 10.678 2.773 5.069 19.958 29.970 7.427

necessarily ordered, as mentioned earlier. The true value of the stress-strength R is equal to θ2
θ2+θ1

= 0.3. The
MLEs of the parameters θ1 and θ2 are obtained as 6.8994 and 2.7709, respectively. So, from (6) and (9), R̂ML
and R̂UMVU are derived as 0.2865 and 0.2832, respectively. Therefore, both the MLE and the UMVUE of R
are close to the true value. From (13) and (16) and also Algorithms 3.1-3.3, we derived the corresponding
CIs for R. We got the number of bootstrap replication, B=1000, and presented the results in Table 4. From

Table 4: The 100(1 − α)% CI for R based on the simulated data given by Table 3.

α = 0.1 α = 0.05
CI Lower Upper Length Lower Upper Length
Perc 0.2067 0.3857 0.1789 0.1991 0.4061 0.2070
Boot1-t 0.2011 0.3862 0.1851 0.1852 0.3987 0.2135
Boot2-t 0.1996 0.3900 0.1904 0.1750 0.4097 0.2347
MLE 0.2050 0.3849 0.1799 0.1913 0.4054 0.2141
AMLE 0.1967 0.3764 0.1797 0.1794 0.3936 0.2142

Table 4, it is observed that all CIs contain the true value of the stress-strength, i.e. R=0.3. Furthermore, as it
is observed from the entries of Tables 1 and 2 (for n = m = 7 and R=0.3), the Boot2-t is the longest CI. Thus
the obtained results in this section confirm the results in the previous sections.

6. Conclusion

In this paper, we have obtained MLE as well as UMVUE for stress-strength parameter R on the basis of
upper RRSS from the exponential distribution. These point estimators have been compared with respect to
the MSE criterion. It is observed that MLE has better performance when R is close to 0.5 while UMVUE is
better for the extreme values of R. Also, we derived an exact as well as an approximated CI based on MLE
and then compared them with three bootstrap CIs. Based on a simulation result and an illustrative example
we observed that the percentile CI and the exact CI of MLE have better performance than the other CIs.
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